Как сделать солнечную батарею

Солнечные батареи своими руками. Расчет и выбор солнечных элементов

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Читайте также:
Подобрать профнастил по маркировке для крыши, фасада и забора

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно спорят по этому поводу. Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Не знаю, кто это аморфные рекламирует. КПД у них низкий, места почти в два раза больше занимают, при этом с возрастом КПД, так же, как и у кристаллических, снижается. Классические модули рассчитаны на 25 лет эксплуатации с потерей КПД в 20%. Плюс у аморфных пока только один: выглядят, как черное стекло (можно весь фасад такими покрыть).

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

О самых популярных альтернативных источниках энергии вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном строительству автономного дома, можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

Читайте также:
Простейший угловой кондуктор своими руками

Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке

Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Читайте также:
Вес профнастила онлайн калькулятор

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1 – пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Шаг #2 – изготовление каркаса для солнечной батареи

Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Солнечная батарея своими руками — пошаговая инструкция как изготовить и провести монтаж солнечной батареи в домашних условиях (фото и видео-инструкция)

Солнечная батарея в готовом для функционирования виде стоит недешево. Но ее можно соорудить своими руками. Подобные технологические новшества — отнюдь не редкость в нашем веке. Подобные устройства многим помогают в быту и жизни.

Так солнечные батареи на крыше дома делают электрическую энергию практически бесплатной. Отопление оранжерей, обеспечение работы отдельных бытовых приборов, обогрев и другие функции — сфера применения подобных конструкций.

С каждым годом они приобретают все большую популярность. Рассмотрим метод сборки электростанции своими силами.

Краткое содержимое статьи:

О солнечных батареях

Разобравшись, как сделать солнечные батареи своими руками, возможно малыми затратами соорудить собственную конструкцию. Она будет работать аналогично тем, производятся промышленностью. Это генератор, функционирующий за счет фотоэлектрического эффекта.

Для того, что бы узнать, как обустроить и установить оборудование на дачном участке, рекомендуем профильный портал — dachnichek.ru.

Гелеоэнергия преобразуется в электричество вследствие падения лучей на пластины, представляющие собой фотоэлементы — главные части конструкции.

Для примера, собранная система состоит из 36 пластин. Характеристики солнечных батарей для дома будут следующие: каждый элемент имеет размеры 8 на 15 см и выдает 2,1 Вт. Суммарная мощность устройства получится равной 76 Вт.

Принцип работы и конструкция

Кванты попадают на фотоэлементы, в результате чего с внешних орбит атомов вещества уходят электроны.

Читайте также:
Барбекю для дачи

Становясь свободными, они создают ток, идущий через контролер к аккумулятору, где накапливается заряд. Затем энергия поступает потребителю — различным бытовым или техническим устройствам.

Комплект солнечной батареи для дома составляется из кремниевых фотоэлементов. Одна их сторон пластины имеет тонкий слой химически пассивного фосфора либо бора.

Электроны, возникая, сдерживаются этой пленкой. Поверхность элемента пересекается металлическими дорожками, где свободные частицы собираются, выстраиваются и движутся упорядоченно, создавая ток.

При большом числе фотоэлементов в комплекте батареи можно получить достаточно много электричества.

Верхний слой пластины снабжен противоотражающим слоем. Это увеличивает КПД.

Пластины фотоэлементов могут быть:

  • поликристаллические, с небольшим КПД около 12 %, но стабильно работающие до 10 лет;
  • монокристаллические, с КПД до 25 % и функционированием до 25 лет, но со снижением параметра эффективности во времени;
  • аморфные, КПД до 6 %, удобные для укладки.

Фотопреобразователи представляют собой модули всей конструкции, закрепляемой в профиле из алюминия.

Комплектация

Для сборки конструкции приготавливают следующий перечень материалов:

  • Фотоэлементы (пластины).
  • ДСП.
  • Углы и рейки из алюминия.
  • Поролон до 2,5 см, жесткий.
  • Прозрачное основание.
  • Крепеж (саморезы).
  • Герметик, предназначенный для внешнего применения.
  • Проводка.
  • Диоды Шоттки.
  • Клеммы.

Габариты батареи предопределяют количество всех нужных материалов. А это зависит от планируемого числа фотоэлементов.

Понадобятся следующие инструменты:

  • Шуруповерт или отвертки.
  • Ножовки для дерева и металла.
  • Паяльник.
  • Тестер для проверки параметров тока.

Фотоэлементы, не совпадающие по размеру, использовать крайне нежелательно. Ведь получаемый по максимуму ток ограничит наименьший из них. При этом мощность больших снижается.

Для сборки модулей воедино понадобятся шины. Подключение производится посредством клемм.

Каркас формируют из деревянных реек. Или же из алюминиевых уголков, отдавая им предпочтение по причинам легкости, надежности этого материала. Отсутствует коррозия, гниение, разбухание от влаги.

Потребуется также прозрачный элемент. От показателя преломления зависит КПД. Важна и способность поглощать ИК (инфракрасный) спектр.

Первый параметр наилучший у плексигласа и оргстекла. А также применяется поликарбонат, который несколько хуже.

Поглощение ИК изучения влияет на нагрев, а значит — на срок службы. Берется термопоглощающее оргстекло или обычное со специальной функцией (например, антибликовое).

Проектирование батареи и ее расположения

Солнечная система должна быть рассчитана перед сборкой по размеру, основу чего составляют габариты пластины.

Также необходимо предусмотреть угол наклона установки, при котором освещаемость панелей будет максимальной (обычно — 50 или 60 градусов).

Лучше, если эта величина будет переменной, но максимум панель получает при перпендикулярном падении лучей. По отношению к выбору места батареи располагают на земле, крышах. Крона деревьев не должна бросать тень, выбирается солнечная сторона.

Расчету также подлежат электрические параметры. Каждый метр может дать 120 Вт. Семья в среднем потребляет 300 кВт ежемесячно.

Для удовлетворения таких нужд потребуется примерно 20 кв. м. Но если цифра площади — всего 5 метров, дом получит значительную экономию.

Монтаж

Сборка состоит из следующих шагов.

В пластинах необходимо припаять контакты. Иногда элементы продаются вместе с металлическими проводниками, но в другом случае те и другие соединяют пайкой.

Приготавливают каркас под размещение фотопластин. Рамки складывают из алюминиевых уголков (70 или 90 мм) или реек. Внутри наносят герметик. Задний корпус выполняют из ДСП с бортами до 2 см высотой, привинченными саморезами.

При расчете размеров оставляют зазор для элементов до 5 мм. В корпусе делают отверстия для вентиляции, шаг 10 см. Прозрачный элемент вставляют в раму, прикрепляется метизами на углах и сторонах.

Нужно смонтировать элементы, разложив их поверхностью вниз на стекло. Делают пайку с «+» на лицевой и «-» на обратной стороне. Соединяют контакты. Припаивают рядами. Затем элементы надо приклеить, нанеся в середину каждого герметик.

Затем цепочки переворачиваются вверх лицом и располагаются по предварительной разметке. Немного прижимаем, выводим на шину контакты через каркасные отверстия. Устройству нужен также диод Шоттки для блокирования обратного тока.

Тестирование амперметром в ясную погоду, полдень. Прибор присоединяем к контактам, меряем ток короткого замыкания, норма силы которого — от 0,5 до 1 А. Максимальный показатель работы батареи — 10 А.

Работоспособные части, размещенные на подложке, переносят в корпус.

Как сделать солнечную батарею своими руками

Очень часто современному жителю приходит мысль как сделать солнечную батарею своими руками. По той простой причине что заводские автономные источники питания стоят дорого. Ну а кто-то просто желает проверить свои способности изобретателя.

Способ изготовления солнечных батарей

Сначала определимся что нужно:

  • Фотоэлементы.
  • Основание для крепления самого ценного.
  • Площадка где будет стоять будущая электростанция.

Теперь разберемся детальнее с каждым пунктом.

Сборка солнечных модулей из кремниевых фотоэлементов

Фотоэлементы с одного бока покрыты тонким слоем фосфора. Иногда там может быть бор.

Данный слой концентрирует в одном месте большое количество электронов. Они не разбегаются так как удерживаются фосфорной пленкой.

На пластине прикреплены металлические дорожки, по которым в дальнейшем протекает электрический ток. Данные кремневые элементы достаточно хрупкие поэтому будьте аккуратными при работе с ними.

Уровень напряжения зависит от количества таких полноценных пластинок.

Основные составляющие части:

  1. Кремневые пластины.
  2. Рейки.
  3. ДСП, несколько листов.
  4. Уголки из алюминия.
  5. Поролон толщиной 1,5-2,5 см.
  6. Что-то прозрачное для основания кремниевых пластин. Обычно это оргстекло.
  7. Шурупы или саморезы.
  8. Герметик.
  9. Провода.
  10. Клейма.
  11. Диоды.

Так же потребуются такие инструменты как:

  • Ножовка.
  • Шуруповерт.
  • Паяльник.
  • Мультиметр.

Нужно работать с фотоэлементами одного габарита. Иначе маленькие элементы ограничат ток. В итоге большие кварцевые модули не позволят функционировать на всю мощь.

Для самостоятельной сборки солнечного модуля используют моно или поликристаллические фотоэлементы с параметрами 3 на 6 дюйма. Их можно отыскать в любом китайском магазине. Чтобы с экономить можно приобрести «специальные группы-пачки». Правда в них часто встречается брак.

Масса торговых точек продает фото пластины пачками по 36 или 72 штуки.

Чтобы соединить разделенные пластины-модули нужны специальные шины. А что бы сборку включить потребуются клеймы.

Теперь, когда с кремневыми фотоэлементами стал все ясно, идем собирать основание.

Остов для солнечной батареи

Это самое простое что можно изготовить в домашних условиях! Обычно его выполняют из реечек или алюминиевого профиля. Его без проблем можно приобрести в хозяйственном магазине. Целесообразно работать с алюминием по следующим причинам:

  • Он легкий и не очень давит на опорную установку.
  • Не ржавеет.
  • Не поглощает влагу.
  • Не подвержен гниению в отличие от древесины.
Читайте также:
Как сделать жалюзи из обоев

При покупке обратите внимание на:

  • Процент преломления солнечного света. Чем он ниже, тем лучше! КПД пластин будет больше.
  • На сколько он поглощает инфракрасные лучи.

На его роль подойдут:

  • Плексиглас.
  • Поликарбонат. Чуть хуже.
  • Оргстекло.

От уровня поглощения зависит будет ли повышаться температура на кремниевых пластинах. Лучше всего пользоваться антибликовым прозрачным стеклом.

Определяемся с местом

Размер солнечного модуля зависит от количества, фотоэлементов, которые будут в него установлены. Лучше всего ставить батареи в место куда свет солнца падает со всех сторон. Так же можно оснастить подобную электростанцию автоматическим поворотом. То есть она будет всегда повернута к солнцу за счет этой штуки. Поворотное устройство для солнечной батареи можно изготовить своими руками.

Проследите за тем чтобы тени домов и деревьев не падали на нашу самодельную солнечную батарею.

Угол наклона зависит от:

  • Климата.
  • Того где находится дом.
  • Времени года.

Солнечные элементы питания выдают максимальный КПД в тот момент, когда лучи падают перпендикулярно.

По некоторым расчетам было выяснено что 1кв метр выдает 120 Вт. В результате этого можно предположить, что на обычный дом в месяц будет уходить 300 кВт. Поэтому нужно задействовать площадь в 20 квадратных метров.

В результате всего выше сказанного солнечная батарея, выполненная своими руками, поможет сэкономить часть средств на электричество.

Пошаговая инструкция как сделать солнечную батарею своими руками

Сейчас в 5 шагах будет рассмотрена более подробная сборка.

Спаиваем контакты фотоэлементов

Первым делом что нужно сделать это спаять проводники. Если можете приобретите кремневые пластины сразу с этой важной частью. Это существенно сэкономить вам время. Паять достаточно нудно и проблематично. В процессе можно нанести вред пластинам.

  • Приготовьте перед собой пластину-фотоэлемент и проводник для припаивания.
  • Режим проводники при помощи картонного шаблона. Длина должна быть в 2-а раза больше солнечной пластинки.
  • Кладем проводник на фотоэлемент. Потребуется два проводника на 1-и элемент.
  • Стоит нанести кислоту на то место где собираетесь паять.
  • Выполнить паяние и прикрепить проводник к кремневой поверхности.

Желательно использовать припой, который выполнен в виде трубочки. Внутри которой залита канифоль.

Не стоит сильно давить на пластину из кремния, так как она очень хрупкая и может сломаться.

Создание каркаса

Он нужен для крепления всех фотоэлементов и его можно сделать из подручных средств. Потребуется алюминиевые уголки или рейки. Из них делается прямоугольная рамка. Размер уголка 70-90 мм.

Нанесите слой герметика на внутреннюю часть углов. Выполняйте эту процедуру качественно. От нее зависит долговечность конструкции.

Теперь перейдите к созданию заднего корпуса. Он выполняется в виде небольшого ящика с маленькими краями. Бока не должны быть по высоте больше 2 см. Рейки крепятся на саморезы. После этого проделайте отверстия для вентиляции. Друг от друга их разместите на уровне 10 см. После этого установите в рамку из алюминия прозрачную панель. Она может быть сделана из оргстекла или плексигласа.

Прозрачную панель плотно фиксируем и прикрепляем. Она фиксируется с помощью метизов. 4 штуки крепив по углам и 2 с длинной стороны и 1 с короткой. Метизы привинчиваем шурупами.

Когда каркас создан остается установить в него фотоэлементы. Перед этой процедурой очистите оргстекло от пыли и обезжирьте его спиртом. В место спирта можно использовать любую спиртсодержащую продукцию.

Внедрение кремниевых фотоэлементов

Это самое сложное что может быть когда делаешь солнечную батарею своими руками.

Берем оргстекло и синими пластинами в низ кладем на него наши фотоэлементы. Чтобы сделать все ровно используйте специальную подложку для нанесения разметки. Друг от друга пластины должны быть расположены на расстоянии около 3 мм.

Алгоритм действий
  • Паять фотоэлементы нужно придерживаясь определенной схемы. Положительный контакт расположен на левой стороне пластинки. Отрицательный находится на правой. Припой и флюс нужно наносить очень бережно.
  • При этой работе соблюдайте последовательность сверху в низ. Каждый ряд нужно будет соединить между собой.
  • Теперь надо приклеить фотоэлементы. Для этого нанесите прозрачный герметик в центр пластин.
  • Переверните цепочки модулей синей стороной вверх. Разместите их по разметке. Аккуратно прижмите пластины для надежной фиксации.
  • Подсоединяем контакты крайних элементов к шине. Плюс к «+», а минус к «-». В качестве шины применяйте более широкий проводник, выполненный из серебра.
  • Солнечную батарею нужно оснастить блокирующим диодом. Он нужен для того, чтобы предотвратить разрядку аккумулятора ночью.
  • На дне делаем отверстия для проводов. Чтобы они не болтались крепим их с помощью силиконового герметика.

Проверка солнечной батареи перед герметизацией

Как только спаяли ряд элементов выполните его тест. Так проще понять где слабый контакт. В качестве тестера потребуется самый простой амперметр. Можно взять мультиметр. Проверку стоит выполнять в солнечный день в 13-14 часов дня.

После того как найдете нужный угол начните выполнять измерения. Для этого подсоедините щупы амперметра к контактам батареи «+» и «-». Проверяем ток короткого замыкания. Сила тока должна быть ниже на 0,5-1 А чем сила короткого замыкания. Прибор должен показывать значение более 4,5 А. Это говорит о том, что солнечная батарея, сделанная своими руками работоспособна!

Батарея, выполненная самостоятельно из элементов группы «В» дает 5-10 А. Это ниже на 15% чем у заводских панелей.

Делаем солнечные батареи герметичными

Внимание! Данный процесс выполняйте только после того как убедитесь, что солнечная батарея полностью функционирует. В качестве заливки используем эпоксидный компаунд. Если для вас это дорого, тогда можно взять силиконовый герметик.

Выделяют 2-а способа герметизации:

  • Полная.
  • Частичная. Герметик наносят на крайние элементы и между пластинками.

Первый вариант более надежен. С верху ставится оргстекло и прижимается к пластинам, на которых нанесен силикон. В качестве дополнительной защиты можно установить прокладку из поролона. Ее ставят между задней поверхностью кремниевых пластин и каркасом.

Когда оргстекло будет установлено, нужно поставить на него груз. Это требуется для выдавливания пузырьков.

Когда все основные работы закончены следует повторно протестировать солнечную батарею. А затем внедрить в эксплуатацию и получать 220 вольт. Но придется прикупить регулятор напряжения, инвертор, аккумулятор и другие дополнительные элементы.

Читайте также:
Вешалка для кирпичной кладки

Некоторые люди собирают солнечную батарею из китайских панелей и вполне неплохо. Только сначала их придется заказать на алиэкспресс или другом подобном магазине.

В итоге у вас будет простейшая солнечная батарея.

Солнечная батарея из сд дисков

Для создания потребуется:

  • Специальный светодиод прямоугольной формы.
  • Компакт диск.
  • Специальная крышка блокирующая утечку солнечной энергии.
  • Болт.
  • Пару проводов.

Процесс создания

Первым делом выполняем работу с крышкой. В ней нужно проколоть отверстие. Это можно сделать аккуратно ножницами, гвоздем или шилом.

Далее вкручиваем шуруп в пробку.

После этого берем CD диск и кладем его на крышку. Затем все закручиваем.

В итоге у нас появилась готовая цельная конструкция усиливающая и концентрирующая солнечный свет.

Теперь чтобы получить электричество перенаправляем луч солнца на светодиод. В итоге генерируется около 5 вольт энергии.

Таким образом если это запаковать в нехитрую конструкцию можно получать нужное количество электричества. Затраты при этом будут самые минимальные.

Солнечная батарея из транзисторов

Чтобы изготовить преобразователь световой энергии потребуется следующее:

  • Транзистор типа П 210
  • Пассатижи
  • Точило
  • Алюминиевое донышко от банки из-под пива или газ воды.
  • Небольшой кусок ДВП для установки транзисторов.

Способ создания

Для начала потребуется снять верхнюю часть транзистора. Это нужно для того чтобы был виден фотоэлемент, реагирующий на свет. Чтобы добраться до нужного нам элемента потребуется применить пассатижи и точило.

В итоге получим такой вот элемент:

Выводы «база» и «эмиттер» дают напряжение 0,95 вольт.

Теперь придется поработать с дном баночки. Из него сделаем отражатель или рефлектор.

Главное, чтобы транзистор не выступал за бортик.

В центре крышки нужно просверлить или пробить отверстие под транзистор.

После всех этих манипуляций закрепляем наш фотоэлемент в углублении.

Теперь нужно проделать отверстия в ДВП. Оно должно совпадать с параметрами транзистора. Размер деревянного прямоугольника должен быть таким чтобы вошло 7 донышек банок.

Транзисторы и отражатели крепим дереву термо клеем.

После этого соединяем наши фото элементы друг с другом последовательно. Используем выводы «база/коллектор.

После сборки наша установка выдает около 0,60 вольт.

Сила тока = 2,8 мА.

Если подобрать транзисторы получше, то можно выжать больше энергии из этой штуковины. Указанные в статье можно встретить за 40 р. За 280 рублей можно собрать своими руками маломощную солнечную панель.

Солнечная батарея из диодов

В конструкции нет ничего сложного. Потребуется лишь несколько диодов. Уровень напряжения зависит от их количества. Эти элементы должны быть прозрачными. В этом случае лучи света будут прямо попадать на кремневую пластинку и давать нам электричество.

Не стоит ждать чуда от всего этого ведь один элемент выдает около 0,1-0,5 вольта. В итоге выйдет вот такая вот конструкция способная выдавать до 4 V.

Подобная установка способна выдавать совсем немного электричества. Эффективность слабая и поэтому лучше закупиться пластинами, выполненными из кремния и сделать нечто более лучшее.

Солнечная батарея из фольги

Из этого материала получится достаточно примитивный энергетический источник. Во многих подобных установках фольга применяется как второстепенный материал. Она выполняет роль отражателя. Попадающие на ее лучи усиливаются и переходят на фотоэлемент. Он генерирует электрический ток.

В сети имеется конструкция где нужно обжечь фольгу на электрической плите. А затем поместить ее в пластиковый контейнер. Дальше залить солевым раствором. Но это уже похоже на обычную солевую батарейку.

Как сделать солнечную батарею в майнкрафт

Поклонникам этой игры сейчас расскажем, как создать энергию из солнца! Этот источник тока применяют как запасной. Когда будет дождь или ночь можно использовать эти батареи. Ток собирается в АКБ. Подобная панель занимает малую площадь поэтому ее выгодно изготовить.

Способ создания

Перед изготовлением придется запастись следующим:

  1. Уголь – 3 шт.
  2. Стекло 3 шт.
  3. Изолированные провода в количестве 12 шт. 4-6 меди.
  4. Оловянный провод – 1. Должен быть изолированным.
  5. Железные слитки – 10 штук.
  6. Красная пыль – 6.
  7. Олово – 2.
  8. Булыжники – 8.
  9. Резина – 13.

Провода, расположенные над солнечными батареями, не будут мешать их работе.

Где ставить и сколько энергии можно получить?

Устанавливаются в места где ничто не препятствует прохождению света. Допускается снег, трубы, стекло, провода.

В пустом биоме генерирование энергии будет идти постоянно.

Производят 1 еЭ/т (13050 еЭ за солнечный день).

Солнечная батарея своими руками из подручных средств

В целях экономии и заботе об окружающей среде, люди давно используют альтернативные источники энергии как солнечные аккумуляторы. Приобретение аппарата обойдется очень дорого, поэтому некоторые «умельцы» научились изготавливать солнечные батареи своими руками из подручных средств.

Устройство и принцип действия солнечных панелей

Приницп работы и устройство батареи заключается в нескольких параметрах, среди которые есть такие:

  • нескольких электронных приборов, которые преобразуют энергию фотонов в электрическую. Фотоэлектрические элементы, соединены в солнечных батареях в строгой последовательностью, расположены параллельно друг другу;
  • аккумулятора, который накапливает в себе электродвижущую силу;
  • генератора-преобразователя периодического напряжения;
  • электрического многопозиционного переключающего аппарата, контролирующего работу всех устройств в батарее.

Фотоэлектрические элементы для создания батарей изготавливаются из кремния. Однако очистка материала очень дорогая процедура. Поэтому в последнее время производители используют медь и индий. Каждый элемент представляет собой автономный бокс, генерирующий электроэнергию. Боксы соединены друг с другом, образуя единую площадку. От ее размеров зависит интенсивность солнечной батареи. Поэтому чем больше солнечная станция содержит фотоэлектрических элементов, тем больше производит энергии.

При попадании лучей солнца на элемент в нем образуется фотоэдс, создается тепловая генерация электронно-дырочных пар. Часть лишних электронов проходит через область соприкосновения двух полупроводников с разными типами проводимости из одного слоя в другой. После этого на внешнем участке электроцепи возникает напряжение. При этом на p-контакте возникает положительный полюс тока, на n-контакте – отрицательный. После подключения к аккумулятору фотоэлектрические элементы образуют замкнутое кольцо. В результате солнечная станция работает по принципу «белка в колесе». Стабильно отрицательно заряженные частицы «бегают» по кругу, а аккумулятор набирает заряд.

Стараясь найти замену дорогому кремнию, ученые-физики создали солнечные станции из органических соединений углерода и меди. Так, немецкий концерн Heliatek оснастил органическими солнечными коллекторами толщиной в 1 мм несколько зданий в Дрездене.

Читайте также:
Как самостоятельно перевести пластиковые окна в зимний режим

Классификация фотоэлектрических модулей

Солнечные электростанции различаются по интенсивности и принципу действия встроенных фотоэлектрических элементов. Некоторые модули значительно проигрывают в мощности, однако, меньше стоят. Отличаются методом изготовления из кремния деталей и бывают:

  • тонкопленочные, являющиеся недорогими и маломощными модулями. Ключевым компонентом в этой батарее является пленка, изготовленная из аморфного кремния. Она занимает большую площадь батареи, однако, энергию генерирует в малом количестве. При установке монтируется как на крышу, так и на любые поверхности;
  • полимерные, изготовленные их кремневодорода. Силан наносят на подложный изоляционный материал батареи. Кроме того полимерный элемент можно нанести на мягкую подложку, поэтому монтировать аморфную станцию можно на любой неровной поверхности;
  • монокристаллические, имеющие собственный надежный корпус, защищенный от попадания влаги и пыли. Благодаря одиночным кристаллам отличаются надежной генерацией энергии в течение большого промежутка времени. Стабильные в работе модули, которые чаще всего устанавливаются в России, Украине и Белоруси;
  • мультикристаллические, изготовленные из солнечных элементов со множеством разнонаправленных кристаллов. Меньше подвержены воздействию высокой и низкой температуры. Однако для генерации энергии этим батареям нужна большая площадь.

Собирают солнечные модули только из фотоэлектрических элементов одного размера. В противном случае максимальная мощность тока маленьких пластин будут ограничивать работу крупных.

Таблица КПД современных солнечных батарей

Степень соответствия удовлетворению потребностей при использовании солнечных модулей определяет отношение отдаваемой к подводимой мощности. Параметр включает в себя затраты на преобразование энергии, его средний показатель составляет 16-21 %. Именно такое количество электричества модуль получает от солнечных лучей, попадающих на фотоэлектрические элементы.

Все модели панелей имеют коэффициент полезного действия от 4,5 % до 26 %. Такая разница между преобразованием и передачей энергии обуславливается различием между материалами и конструкциями при изготовлении пластин. На характеристики в отношении передачи и преобразования солнечной энергии также влияет:

  • мощность излучения солнца. При понижении активности светила интенсивность панелей понижается. Чтобы модули снабжали владельцев электричеством ночью, в них интегрируют специальные аккумуляторы-накопители;
  • температура. Нагрев фотоэлектрических преобразователей снижает их способность превращать энергию в ток. Панели с встроенными охлаждающими приборами являются продуктивнее. Поэтому при температуре воздуха -15 градусов и солнечной погоде, КПД преобразователей выше, чем летом при температуре воздуха +28 — +32 градуса;
  • угол наклона панели. Для обеспечения максимально высокого КПД конструкцию панели нужно направить строго под попадание лучей солнца. Самыми производительные модели, уровень наклона которых регулируется относительно расположения светила;
  • климатические условия. На практике доказано, что у владельцев фотоэлектрических преобразователей, проживающих в регионах с пасмурной дождливой погодой, показатель КПД панелей ниже.

При изготовлении современных солнечных панелей, ученые-конструкторы из немецкого Института энергосистем Фраунгофера использовали технологию сращивания пластин, добившись рекордного КПД в 34, 8%.

Коэффициент полезного действия солнечных преобразователей во многом зависит от типа самородного элемента-кремния. Аппараты на основе этого материала отличаются методом изготовления и КПД.

Вид панели КПД Описание
Монокристаллические 15%-25% Аппараты, которые являются самыми производительными и долговечными. Из-за высокой структурированности материала имеют высокую цену.
Поликристаллические и полимерные 11%-19% Модули, которым для хорошей производительности нужна большая площадь, чем монокристаллическим. Имеют неоднородную внешнюю конструкцию, которую можно исправить при помощи просветляющих покрытий.
Тонкопленочные 5% -10% Аппараты отличаются простотой в изготовлении и низкой ценой. В процессе эксплуатации показатели КПД этих модулей снижаются.

Преимущества и недостатки природной энергии

Чем же так хороша природная энергия и что толкает на установку модулей не только частных лиц, но и владельцев крупных предприятий? Основными достоинствами солнечных преобразователей являются:

  • доступность источника электричества, которое обойдется пользователю бесплатно;
  • положительное влияние на сохранность окружающей среды;
  • долговечность приборов;
  • простой монтаж и принцип действия;
  • отсутствие проблем при повышении цен на коммунальные услуги.

Однако среди всех достоинств, панели имеют недостатки в виде:

  • очень большой стоимости;
  • приобретения повышенного количества фотоэлементов для удовлетворения потребностей большой семьи или помещения с площадью более 50 кв. м;
  • спада производительности при работе панели в пасмурную погоду.

Солнечная батарея своими руками

Затраты на изготовление самодельной солнечной батареи в несколько раз меньше, чем приобретение даже самой дешевой модели панели из Китая. Работает такая конструкция-самоделка не хуже, чем модуль, изготовленный на производстве.

Имея минимум знаний и умений, можно попытаться сделать солнечную батарею для дома или дачи своими руками. При этом фотоэлектрические элементы можно не покупать, а изготовить из имеющихся материалов. Мини-генераторы из диодов или старых транзисторов не будут обладать супермощностью. Однако благодаря самодельным коллекторам можно зарядить мобильный телефон или планшетник, подключить настольную лампу. Коллектор, изготовленный из старых алюминиевых банок при правильном размещении, поднимет температуру воздуха в двух-трех комнатах на 10-12 градусов.

В процессе пайки диодов не стоит спешить. Хрупкие тонкие элементы при резком движении могут поломаться.

Коллекторы из диодов

Кристаллы-полупроводники, заключенные в пластиковый корпус, концентрируют на себе солнечный свет. Под воздействием света на участке p-n-зоны начинают активное движение электроны, формирующие направленный поток, а после фототок. Благодаря этому можно создать мини-панель из светодиодов самостоятельно. Стоит знать, что вырабатываемая одним полупроводником мощность будет маленькая. Поэтому чтобы изготовить панель средней мощности нужно очень много светодиодов, которые нужно соединить в замкнутый круг. Для создания коллектора:

  • группу из светодиодов собрать на пластине из текстолита или листе плотного картона, соединив их медными проводами;
  • пластину с элементами поместить в прочную емкость с прозрачной крышкой;
  • выводы припаять к разъему, к которому подключать приборы.

Стоит знать, что выработка энергии самодельной панели из диодов возможна только под прямыми лучами солнца. Как только небольшое облако закроет светило, напряжение на выходе полупроводников будет равно нулю.

Коллекторы из транзисторов

У людей, которые увлекаются радиотехникой, накапливается много электронных запчастей. Среди них могут быть радиоэлектронные полупроводниковые триоды, выпущенные еще в Советском Союзе. Как детали они нигде не применяются из-за больших габаритов. Однако из этих старых транзисторов можно собрать миниатюрный фотоэлектрический элемент. Интенсивность такой батареи будет небольшой по отношению к ее габаритам, подойдет только для подключения к питанию маломощных аппаратов.

Для переделки полупроводникового триода в солнечную панель, нужно:

  • избавиться от верхней поверхности прибора, оставив неповрежденными кристалл и тонкие провода;
  • соединить элементы между собой медной проволокой на куске органического стекла или плотной бумаги;
  • для лучшего напряжения транзисторы соединить последовательно;
  • выводы припаять к разъему, к которому можно подключить для зарядки телефон, фонарик, нотбук;
  • после параллельного соединения полупроводников и попадания на них солнца, образуется ток.
Читайте также:
Отделка балкона внутри

Преобразователи из алюминиевых банок

Конструкция солнечного генератора из алюминиевого вторсырья представляет собой деревянный короб с изолированной задней поверхностью и прозрачной верхней крышки из оргстекла или поликарбоната. Внутри каркаса монтируются трубы, изготовленные из склеенных баночек, покрашенных черной матовой краской. По сделанным трубам прокачивается воздух, который поступает из нижней части пространства комнаты и в разогретом виде поднимается вверх.

В процессе происходит свободноконвективные движения воздуха и принудительная тяга. Мощная движущая сила толкает нагретый воздушный поток по вентиляционному каналу в комнату, где он замещает холодный воздух. Алюминий не подвержен коррозии даже при образовании внутри трубок коллектора конденсата. Кроме того, глянцевая внутренняя поверхность банок отражает тепло внутрь трубок и не выпускает наружу. Чтобы изготовить солнечный генератор из алюминиевых емкостей своими руками:

  • 200-250 банок из-под пива или напитков установить в деревянном коробе, склеив емкости при помощи термоустойчивого герметика;
  • в ящике сделать отверстия для входа-выхода воздуха;
  • банки и основание покрасить черной не глянцевой краской;
  • выкрашенные емкости накрыть оргстеклом или поликарбонатом, зафиксировав прозрачную поверхность алюминиевыми профилями;
  • установить на южную стену дома или квартиры.

Солнечный коллектор из кремниевых пластин или фотоэлементов

Полупроводниковые кремниевые вафли-фотоэлементы можно заказать в интернет-магазинах и сделать из деталей среднемощный солнечный коллектор. Под воздействием солнца электроны в таких полупроводниках отходят от ядер атомов в более высокие орбиты, создавая электрический ток. Для того чтобы собрать такой солнечный генератор:

  • очистить поверхности кремниевых спиртом;
  • при помощи мультиметра определить токопроводящую сторону пластины;
  • закрепив квадраты клейкой лентой, нанести раствор диоксида титана;
  • удалив ленту, поместить пластины на электрическую плиту, чтобы обжечь двуокись титана;
  • в емкости с водой развести сок вишни или сливы, поместить элемент на 15 минут;
  • пластины высушить, обтереть спиртом;
  • подготовить антибликовое или оргстекло;
  • при помощи паяльника мощностью не менее 60-80 Вт и проводников спаять детали на прозрачной поверхности последовательно сверху вниз;
  • спаянные фотоэлементы приклеить к стеклу термостойким герметиком;
  • контакты крайних кремниевых вафель вывести на шину с плюсом и минусом;
  • оснастить будущий коллектор блокирующим диодом, который в дальнейшем соединить с контактами;
  • из ДСП подготовить деревянный каркас, закрепить его по бокам алюминиевыми уголками, в нижней части через каждые 10 см проделать вентиляционные отверстия;
  • зафиксировать в коробе прозрачную поверхность с приклеенными кремниевыми вафлями, выведя контакты наружу;
  • установить солнечный аккумулятор рядом с источником света.

Лучше всего заказывать солнечные кремниевые пластины с диодами, шинами и плоскими тонкими проводниками. Такая покупка сохранит не только время, но и деньги на приобретение второстепенных запасных элементов.

Проект системы и выбор места

Схема системы сборки солнечного коллектора предусматривает расчеты нужного размера пластины. Кроме того по проекту коллектор устанавливается на фасаде, ориентированном в южную сторону. Допустимо отклонение на 35 градусов на восток.

Генератор устанавливается под определенным углом, который обеспечит максимальное попадание солнечных лучей на фотоэлектрические элементы. Место установки панели можно подобрать в любом месте: на земле, на крыше, на стене. Главное, разместить батарею на солнечной стороне так, чтобы она не затенялась деревьями или постройками.

При подборе угла наклона коллектора учитывать расположение постройки и время года. Желательно монтировать батарею так, чтобы величину угла можно было менять в зависимости от сезонных изменений, так как фотоэлементы эффективно работают только при перпендикулярном попадании лучей на поверхность.

Один квадратный метр самодельной батареи из кремниевых вафель выдает в процессе 100 Вт-120 Вт. Поэтому для обеспечения электроэнергией в 250 кВт-350 кВт панель должна иметь не менее двадцати квадратных метров площади.

Тестирование самодельной батареи перед герметизацией

До того как обеспечить коллектору полную герметичность, нужно протестировать аккумулятор при помощи амперметра. Кроме того, проверив заранее панель, можно устранить ошибки, которые возникают во время спаивания вафель.

Тестирование нужно провести в солнечный день в час-два дня. Для этого:

  • вынести генератор на улицу, установить под тем углом, который был определен заранее;
  • подсоединить к контактам электроизмерительный прибор, измерить ток короткого замыкания;

  • если солнечный коллектор правильно спаян и собран, мощность электрического тока должна составлять на 0, 5 – 1 ампер ниже, чем возрастающий электрический импульс ударного типа. Показания прибора должны быть не менее 4, 5 ампера;
  • самодельный генератор, изготовленный из кремниевых пластин-фотоэлементов, должен выдать параметры в 5-10 ампер.

Герметизация уложенных в корпус фотоэлементов

После тестирования кремниевых пластин можно проводить герметизацию. Для заделки швов и стыков использовать эпоксидную смолу или термоустойчивый герметик. Олигомер нанести на пространство между фотоэлементами и на крайние детали. Далее, сверху установить акриловое стекло, плотно прижав к кремниевым пластинам.

В качестве дополнительной защиты и меньшего изнашивания фотоэлементов, между поверхностью короба и кремниевыми элементами установить прокладку из минеральной ваты.

После установки акрилового стекла конструкцию уложить на твердую поверхность так, чтобы стенка короба из ДСП была вверху. Это необходимо для того, чтобы из батареи вышел воздух. После повторного тестирования коллектор установить на выбранный участок, подключить к системе дома или квартиры.

Загоревшись желанием создания солнечной стации своими руками, не стоит изготавливать огромный коллектор. Чтобы понять все нюансы работы, нужно собрать маленький генератор. Если после тестирования, прибор хорошо справится с задачей, приступать к созданию более мощной модели.

Как закрепить дюбель в рыхлой стене: инструкция для домашнего ремонта

Содержание

Во время ремонта и монтажных работ в быту часто возникает проблема с тем, как укрепить дюбель в рыхлой стене. Старая кирпичная кладка, пеноблоки малой плотности, толстый слой штукатурки, бетон с низким содержанием цемента – в такие материалы сложно вогнать крепеж так, чтобы он надежно закрепился в отверстии. Взявшись за установку светильников или монтаж подвесных тяжеловесных конструкций, мастер рискует поставить крест на своей работе, если столкнется с таким явлением, как выпадающий дюбель. Ему не удастся просверлить подходящее отверстие: материал будет крошиться, а диаметр и форма отверстия не будут соответствовать размеру крепежа. А если работать по бетону с малым содержанием цемента, из стен в буквальном смысле будет сыпаться песок! Как справиться с этой нелегкой задачей? Воспользуйтесь нашими советами.

Читайте также:
Лестница из металла

Пробуем народные методы

Спросите отца или деда, как закрепить дюбель в рыхлом основании. Наверняка получите массу дельных советов. Мы собрали несколько наиболее популярных, которыми люди пользуются еще с советских времен. Ведь тогда не было такого большого выбора крепежа, и в домашнем ремонте были хороши любые средства.

Деревянная пробка

Помогает укрепить дюбель в большом отверстии. Возьмите пробку или небольшую дощечку, отрежьте несколько тонких полос длиной с крепеж. Поместите две – три полоски в отверстие, а затем вбейте дюбель. Деревянные уплотнители будут удерживать его в материале. Кстати, иногда для этой цели используют спичку. Только ее вставляют внутрь пластикового элемента, а не в само отверстие – она действует для расклинивания.

Такой способ подойдет для крепления легковесных предметов, например, картин или светильников.

Изолента

Без нее раньше не обходился ни один ремонт! Смекалистые пользователи стали применять ее и для уплотнения дюбеля в стене. Нужно намотать ленту по направлению резьбы крепежа и установить его в отверстие. Кстати, если данного материала под рукой не оказалось, можно заменить целлофаном.

Метод подходит для крепления конструкций, на которые не будет оказываться большая весовая или динамическая нагрузка.

Гипсовый бинт

Более надежный вариант уплотнителя. Купить такой бинт можно в аптеке. Сначала им обматывают дюбель, затем смачивают и устанавливают в стене. Когда гипс застынет, элемент еще больше укрепится в основании. Это отличный вариант по сравнению со шпаклевкой, которая может высыпаться из отверстия.

Крепеж защищен от свободного проворачивания, поэтому таким способом можно монтировать крупные элементы, например, полки или алюминиевый профиль.

Жидкие гвозди

Пожалуй, это самый дорогой и долгий метод. Но зато очень действенный! Понадобится пистолет и жидкие гвозди. В отверстие вносят клеевой состав, заполняя его до упора, и вставляют дюбель. Можно наживить и саморез, не вкручивая его до конца. После оставляют на сутки до полного застывания состава. И уже потом вкручивают метиз до конца. Таким способом удается надежно зафиксировать крепеж, который выдержит кронштейны и направляющие.

Все перечисленные способы успешно используются в домашнем ремонте. Они хороши, если нужно уплотнить одно-два отверстия, ну в крайнем случае – пять. А если требуется установить около 1000 крепежных элементов? Неужели с каждым из них придется проделывать такие манипуляции? К тому же для более серьезной нагрузки нужен другой подход. Давайте рассмотрим несколько профессиональных решений.

Испытываем современные технологии

Закрепить подвесные шкафы кухонного гарнитура, установить радиаторы или перила для лестницы… Для таких задач нужно выбрать правильный крепеж в зависимости от материала, в который вы будете его устанавливать. Ведь выпавший дюбель доставит массу проблем при фиксации ответственных конструкций и изменяемой нагрузки. Шкафы могут повредиться, радиатор потечь, а еще вместе с крепежом может отвалиться значительный кусок стены вокруг отверстия! Перечислим основные решения для наиболее распространенных рыхлых материалов.

Дюбели для газо- и пенобетона

Например, вы хотите установить кондиционер в частном доме из пеноблоков. Какой крепеж выбрать? Самая распространенная ошибка – использование дюбелей для бетона. Они не будут держаться в рыхлой стене! Причем чем тоньше элемент, тем больше вероятность выпадения. Пытаться укрепить дюбель народными методами не стоит: ведь есть специальный крепеж.

Дюбели для газобетона и пенобетона бывают из разных материалов. Пластиковые подходят для крепления легковесных предметов, например, картин, светильников, полок и зеркал. Металлические способны выдерживать большие нагрузки и предназначены для монтажа техники, перегородок, сантехники и т.д.

Важно знать: пеноблок имеет ячеистую структуру и довольно хрупкий. Поэтому для крепежа тяжеловесных предметов лучше использовать дюбели большого диаметра, например, 10 – 14 мм. Стоит учесть и форму элемента. Если он имеет продольные ребра – есть риск, что от изменяемых нагрузок крепеж расшатается и вылетит из стены. Поперечные ребра лучше зацепляются внутри отверстия за материал, поэтому им не страшны динамические нагрузки. Они отлично подходят, к примеру, для вешалок или полок.

Расскажем, как закрепить дюбель в пенобетоне. Сверлим отверстие, вкручиваем с помощью шестигранного ключа пластиковый элемент, а затем фиксируем подвешиваемый предмет шурупом или саморезом. Понадобится отвертка, а лучше – шуруповерт.

Дюбели для гипсокартона

Перегородки, ниши, подвесные потолки… Все чаще их выполняют из ГКЛ – гипсокартонных листов. Это в прямом смысле два картонных листа, между которыми находится спрессованный гипс. Структура материала очень рыхлая, поэтому к нему не крепят тяжелые полки или блоки кондиционеров. Однако приходится фиксировать светильники, фоторамки, плинтуса или кабель-каналы. Для таких целей есть специальный крепеж – дюбели для гипсокартона.

На заметку: сейчас есть элементы, которые не требуют предварительного засверливания стены. Такое решение снижает риск расшатывания отверстия. Вы можете взять так называемые самозасверливающиеся дюбели с наконечником в виде сверла. Также бывают классические, но требующие специальной насадки на дрель. Дюбель-бабочка подойдет для конструкций с изменяемой нагрузкой, так как имеет распорки и надежно фиксируется в стене без риска прокручивания.

Химический анкер

Практически беспроигрышный способ укрепить дюбель в рыхлой стене. Подходит для кирпича, толстого слоя штукатурки, пено- и газобетона. Фиксация происходит за счет распорки оболочки в основании, а сцепление создает химический состав, которым крепится шпилька или арматура. Доказано, что химический анкер выдерживает в 2,5 раза большую нагрузку, чем стандартный резьбовой крепеж. Подходит даже для установки оборудования. Подробно о процессе монтажа вы можете прочитать в отдельной статье.

Запоминаем лайфхаки мастеров

Если дюбель не держится, как закрепить его, вы уже знаете. Выбирайте наиболее подходящий вам способ, а лучше протестируйте несколько вариантов на незаметном участке стены. Напоследок мы припасли для вас лайфхаки мастеров, которые помогут добиться лучшего результата. Берите на заметку!

Рыхлые материалы лучше сверлить в безударном режиме либо в режиме мягкого удара – если такой есть у вашего перфоратора. Отверстие получится более аккуратным, без сколов и нужного диаметра. В качестве оснастки мастера рекомендуют сверло с победитовой напайкой. Если есть риск, что крепеж не удастся закрепить в большом отверстии, лучше возьмите сверло на 0,5 мм меньше диаметра дюбеля.

Читайте также:
Вес профнастила онлайн калькулятор

После подготовки отверстия удалите из него пыль. Вы можете взять специальный ершик или использовать строительный пылесос. Особенно важно делать это с материалами, которые сильно осыпаются. Иначе не удастся хорошо укрепить дюбель. Для большей надежности мастера предлагают загрунтовать отверстие. Нанесите грунтовку с помощью ватной палочки и дайте высохнуть. Это исключит образование пыли внутри и улучшит сцепление.

Надеемся, наши советы помогут подобрать вам оптимальный способ крепления дюбелей в рыхлых материалах. Пусть ваш ремонт пройдет без ошибок! А крепеж вы можете купить на нашем сайте.

Как повесить в прихожей вешалку на стену, крепеж для бетона и гипсокартона

Зачастую вместе с вешалкой мы приобретаем крепеж для нее, а также инструкцию по монтажу. При этом материал стены диктует свое, да и крепеж приходится выбирать самому. Рассмотрим, как быстро и надежно закрепить вешалку в прихожей на разные типы стен.

Правила размещения вешалки в прихожей

Вешалку прихожей размещают на высоте 1,5 м от пола. Для детских вещей высота может быть ниже, при этом ребенок должен до нее доставать без проблем. Если стена перед входной дверью находится на расстоянии менее 1,4 м, вешалку на ней размещать не следует. Ее можно закрепить на одной из боковых стен так, чтобы открытая дверь не перекрывала доступ к одежде. Таким образом, вешалку можно прикрепить не ближе 1 м от входной двери.

Крепеж настенной вешалки на стене из кирпича и бетона

Крепление вешалки к стене начинается с измерения расстояния между ее крепежными элементами. Затем на стене следует разметить соответствующие отверстия под крепеж, причем они должны размещаться на одном уровне.

Сверление отверстий под дюбели в стене из бетона или из силикатного кирпича выполняют перфоратором или дрелью с ударной функцией. Обычной дрелью можно подготовить отверстия в пенобетоне или гипсе. Ограничитель глубины сверления поможет подготовить отверстия необходимого размера.

Чтобы закрепить вешалку на стене из кирпича и бетона, важно правильно выбрать дюбеля и саморезы. Для одежной вешалки оптимально использование дюбелей диаметром 6 мм и длиной 40 мм. В случае тяжелых вещей увеличиваем длину дюбелей до 60 мм. При этом саморез должен быть длиннее дюбеля на ту часть, которая выступает из стены плюс дополнительные 5 мм.

Дюбеля нужно выбирать из мягкого материала, что обеспечит более надежное крепление. Распространенный дюбель, две половинки которого обязаны расходиться в стороны при закручивании шурупа, не обеспечивает надежный монтаж. Довольно часто при вкручивании самореза он уходит в сторону, а половинки дюбеля не расходятся и не расклинивают крепеж.

Предпочтительнее использовать дюбеля, тело которых увеличивается в диаметре по всей длине при закручивании шурупа. Приобретение изделия известной марки в значительной степени гарантирует правильный выбор.

При подготовке отверстий под крепеж важно обеспечить их оптимальный диаметр. Хорошо, если дюбель входит в отверстие наполовину от руки, а затем забивается молотком, не изгибаясь. Чтобы обеспечить качественное отверстие под дюбель диаметром 6 мм, его сначала следует просверлить диаметром 5 мм с помощью перфоратора или ударной дрели. Затем нужно выполнить второй проход сверлом 6 мм.

Как правильно закрепить вешалку на гипсокартон

Гипсокартонная стена имеет ограниченную прочность, и крепление на нее каких бы то ни было элементов должно быть хорошо продумано. При этом механизм крепления легких предметов принципиально отличается от крепления тяжелой мебели.

Так, для крепления легких конструкций на гипсокартонных стенах существуют специальные элементы под названием дюбель-бабочка и дюбель-дрива. Подобный крепеж бывает как пластиковый, так и металлический. Идея их конструкции состоит в том, чтобы зацепиться за возможно большую площадь гипсокартона. С помощью такого крепежа допускается повесить на стене легкую вешалку, не предназначенную для зимней одежды.

Если речь идет о креплении более тяжелых предметов, необходимо отыскать при помощи большого магнита места размещения несущего металлического профиля и рассчитывать на крепление вешалки именно в этих точках, причем несколькими саморезами достаточного диаметра. В качестве магнита подойдет старый громкоговоритель. Стандартное расстояние между стойками из металлического профиля – 60 см.

Хорошо, если место размещения вешалки известно при обшивке гипсокартонных стен. Тогда можно предусмотреть двойную поперечину из профиля каркаса на нужной высоте для последующего настенного крепления. Подойдет и деревянный брус, однако его местоположение нужно измерить и зафиксировать.

Еще один вариант повесить тяжелую вешалку на гипсокартон – использование длинных анкерных болтов. Крепить вешалку таким способом удается, если несущие стены изготовлены из силикатного кирпича или бетона. В случае стен из пеноблоков или щелевого кирпича их прочности будет недостаточно для монтажа анкеров.

При монтаже на анкерные болты сначала нужно просверлить в гипсокартоне небольшое отверстие и измерить расстояние до несущей стены. Крепление возможно, если измеренное расстояние позволяет установить анкера так, чтобы они оказались хотя бы на треть длины в кирпиче или бетоне.

Под анкерные болты сверлят отверстия в соответствии с их диаметром на глубину установки крепежа. Анкер загоняют в отверстия, и при вращении ключом его гайки происходит расклинивание трубки в теле стены. Если конструкция вешалки не позволяет ее закрепить с помощью анкерных болтов, предусматривают дополнительные переходные элементы, к которым прикручена вешалка. Такой вариант мы рассмотрим в следующем пункте. В следующем видео представлены примеры крепления вешалки на гипсокартон.

Варианты крепления самодельной вешалки к стене

Чтобы закрепить самодельную вешалку на стене, можно воспользоваться дополнительными элементами, которые в избытке представлены в магазинах стройматериалов. Это могут быть как уголки различных размеров, так и крепежные элементы для мебели специальной конструкции.

Задача сводится к тому, чтобы подобрать наиболее подходящий крепеж. Это могут быть скрытые элементы для монтажа мебели, а также уголки с декоративными накладками.

Удобны в применении кронштейны с отверстиями переменного сечения для закрепления вешалки на головки метизов в стене. В зависимости от конструкции они могут крепиться непосредственно на задней плоскости мебели или на верхнем крае вешалки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: